## Bacteria Total Maximum Daily Load Studies for Hunting Creek, Cameron Run, and Holmes Run



Informational Meeting July 29, 2010

### Why are we here?

#### Hunting Creek, Cameron Run, and Holmes Run do not meet water quality standards

- Where are these streams located?
- How do we know standards aren't being met?
- Why don't these streams meet standards?
- What is being done to correct the problem?

#### **Project Team**

- Virginia Department of Environmental Quality
- Interstate Commission on the Potomac River Basin
- Virginia Institute of Marine Science







## Agenda

- TMDL Background
- Cameron Run and Holmes Run TMDLs
- Hunting Creek TMDL
- TMDL Implementation
- Questions and Discussion

## How do we know if water bodies in Virginia are healthy?

- Perform physical and chemical monitoring on water bodies throughout the state.
- Monitor parameters such as:
  - pH
  - Temperature
  - Dissolved Oxygen
  - Biological Community
  - Bacteria
  - Nutrients
  - Fish Tissues
  - Metals/Toxic Pollutants



## What does DEQ do with the monitoring data that is collected?

Compare the data collected to the water quality standards.

**Assessment Performed Once Every Two Years.** 

#### Water Quality Standards:

- Regulations based on federal and state law.
- Set numeric and narrative limits on pollutants.
- Consist of designated use(s) and water quality criteria to protect the designated uses.



### Designated Uses

- Recreational
- Public Water Supply
- Wildlife
- Fish Consumption
- Shellfish
- Aquatic Life









# Recreational Use Impairment What are Fecal Coliform and E. coli Bacteria?

Coliform Bacteria: Commonly found in soil, decaying vegetation, animal feces, and raw surface water

#### Escherichia coli:

- Subset of fecal coliform bacteria
- Correlate better with swimming associated illness

#### **Fecal Coliform:**

- Found in the digestive tract of humans and warm blooded animals
- Indicator of the potential presence of pathogens in water bodies

### Potential Sources of Fecal Coliform Bacteria











## What happens when a water body doesn't meet water quality standards?

- Waterbody is listed as "impaired" and placed on the 303(d) list.
- Once a water body is listed as impaired, a Total Maximum Daily Load value must be developed for that impaired stream segment to address the designated use impairment.
- TMDL Studies are required by law:
  - 1972 Clean Water Act (CWA)
  - 1997 Water Quality Monitoring Information and Restoration Act (WQMIRA)

# What is a TMDL? Total Maximum Daily Load

TMDL = Sum of WLA + Sum of LA + MOS

#### Where:

TMDL = Total Maximum Daily Load

WLA = Waste Load Allocation (point sources)

LA = Load Allocation (nonpoint sources)

MOS = Margin of Safety

The TMDL represents the total amount of a certain pollutant a waterbody can receive and still meet water quality standards.

### An Example TMDL



### **Impairment Listings**

- The water quality criterion for E. coli bacteria is a Geometric Mean of 126 cfu/100. Must have four or more weekly samples in a month to calculate a geometric mean.
- If insufficient data are available to calculate a geometric mean, a maximum criterion of 235 cfu/100mL is used to assess the data.

| Stream<br>Name             | Area                 | Upstream Downstream<br>Limit Limit |                                                  | DEQ Monitoring<br>Stations                                                    | Exceedance<br>Rate*                    |
|----------------------------|----------------------|------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|
| Hunting Creek<br>(Tidal)   | 0.53<br>square miles | Route 241<br>(Telegraph Road)      | Confluence with the Potomac River                | Station 1aHUT000.01<br>(Located at the George<br>Washington Memorial Parkway) | 11 of 17 samples<br>(40.7% exceedance) |
| (1122.)                    |                      | Bridge Crossing                    |                                                  | Station 1aHUT001.72<br>(Located at Telegraph Road)                            | 3 of 11 samples<br>(27.3% exceedance)  |
| Cameron Run<br>(Non-Tidal) | 2.08 miles           | Confluence with<br>Backlick Run    | Route 241<br>(Telegraph Road)<br>Bridge Crossing | Station 1aCAM002.92<br>(Located at Eisenhower Avenue)                         | 5 of 18 samples<br>(27.8% exceedance)  |
| Holmes Run<br>(Non-Tidal)  | 3.58 miles           | Mouth of Lake<br>Barcroft          | Confluence with<br>Backlick Run                  | Station 1aHOR001.04<br>(Located at Pickett Street)                            | 3 of 12 samples<br>(25% exceedance)    |

<sup>\*</sup> Exceedance rates taken from the 2008 Integrated Assessment, which looked at data from 01/01/2001 to 12/31/2006.

#### **Location of Impaired Segments**



#### Project Schedule

- Project initiated in 2009
- Meetings:
  - Technical Advisory Committee Meetings
    - March 2009, June 2009, June 2010
  - Public Meetings
    - March 2009, June 2010, July 2010
  - Specific Stakeholder Meetings and Conference Calls
    - February 2010, June 2010, July 2010
- Information Sharing:
  - DEQ Website: http://www.deq.virginia.gov/tmdl/develop.html
  - FTP Site: ftp://ftp.deq.virginia.gov/wps/PERMIT/NRO/Hunting%20Creek%20TMDL/
- Schedule for Project Completion
  - Public Comment Period extends until August 18, 2010
  - Final TMDL Report due to EPA by October 1, 2010

#### TMDL Development Methodology

- Collected data and performed a watershed assessment.
- Evaluated the sources of bacteria in the watershed.
- Used computer models to determine the bacteria reductions required to meet water quality standards
  - HSPF non-tidal model
  - ELCIRC tidal model

#### HSPF Model Segmentation for Hunting Creek Watershed



#### Holmes Run and Cameron Run TMDLs

| Human Sources  Reduction (Sanitary Sewer Overflows and Failing Septic Systems) | Wildlife Reduction (Direct Deposition) | Land Based<br>Reduction<br>(Wildlife, pets) | Exceedance Rate<br>(Monthly Geometric<br>Mean) |
|--------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------------------------------|
| 100%                                                                           | 50%                                    | 83%                                         | 0%                                             |

| Holmes Run TMDL (cfu/year) for <i>E. coli</i> Bacteria |           |          |          |  |  |
|--------------------------------------------------------|-----------|----------|----------|--|--|
| WLA                                                    | LA        | MOS      | TMDL     |  |  |
| 8.38E+13                                               | 8.99 E+12 | Implicit | 9.28E+13 |  |  |

| Cameron Run TMDL (cfu/year) for <i>E. coli</i> Bacteria |           |          |          |  |  |
|---------------------------------------------------------|-----------|----------|----------|--|--|
| WLA                                                     | LA        | MOS      | TMDL     |  |  |
| 1.33E+14                                                | 1.98 E+13 | Implicit | 1.53E+14 |  |  |

<sup>\*</sup> A public meeting was held on June 30, 2010 that presented the details of the Holmes Run and Cameron Run TMDLs. The presentation from that meeting is available online at: http://www.deq.virginia.gov/export/sites/default/tmdl/pptpdf/huntcamholmp2.pdf

## HSPF Model Segmentation for Hunting Creek and the Potomac River



#### Hunting Creek ELCIRC Model

- Model domain includes tidal Hunting Creek and Potomac River
- Helps to understand hydrology and pollutant transport and fate
- Used to establish the TMDL based on 2004 and 2005 model years.



## Bacteria Sources in the Hunting Creek Watershed\*

- Alexandria Waste Water Treatment Plant
- Alexandria's Combined Sewer System
- Sanitary Sewer Overflows
- Failing Septic Systems
- Pets
- Wildlife

<sup>\*</sup>Bacteria sources outside of Hunting Creek but within the model domain were included in the model.



### What is a Combined Sewer System?

- Sewers designed to collect stormwater runoff and domestic sewage in the same pipe.
- Under normal flows, wastewater is transported to a treatment plant.
- Under high flow/storm event, if treatment capacity of the WWTP is exceeded, wastewater is discharged directly to stream.
- Combined Sewer Overflow (CSO) events contain stormwater and untreated human waste.



## **Challenges of the Hunting Creek TMDL**

- Very complicated project
- Regulatory, policy, and technical challenges
  - Statutory and regulatory provisions, especially as applicable to the CSO
  - Upstream and Downstream Model Domain Boundaries
  - Boundary of Hunting Creek with the Potomac
  - How to assess against water quality standards
- We have worked with stakeholders to address challenges.

### **Hunting Creek TMDL**

| Hunting Creek TMDL (cfu/year) for <i>E. coli</i> Bacteria |           |          |          |  |  |
|-----------------------------------------------------------|-----------|----------|----------|--|--|
| WLA                                                       | LA        | MOS      | TMDL     |  |  |
| 3.24E+14                                                  | 2.23 E+13 | Implicit | 3.46E+14 |  |  |

| Reductions in Upstream Loads<br>(Segment 100) and Direct Drainage<br>(Segments 120, 140, 160-180) |                                  | 90) an                          | in Hooff Run Lo<br>d Direct Draina<br>110, 130, 150, a | CSO Reductions                   |                                 |             |                            |
|---------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--------------------------------------------------------|----------------------------------|---------------------------------|-------------|----------------------------|
| Human                                                                                             | Direct<br>Deposition<br>Wildlife | Land Based<br>Loads<br>(Runoff) | Human                                                  | Direct<br>Deposition<br>Wildlife | Land Based<br>Loads<br>(Runoff) | Outfall 002 | Outfall 003<br>Outfall 004 |
| 100%                                                                                              | 50%                              | 83%                             | 100%                                                   | 50%                              | 98%                             | 80%         | 99%                        |

<sup>\*</sup> No reductions are required from the Alexandria Waste Water Treatment Plant because their permit requires them to discharge at water quality standards.

## How Can these Reductions be Achieved?

#### • Point Sources:

- MS4 Permits and VPDES Permits
- Mechanism for achieving required reductions is through permitting process.

#### Non-Point Sources:

- TMDL Implementation Plan:
  - Required by State Law (WQMIRA 1997\*).
  - Strategy for how to make reductions required by the TMDL Study.
  - Relies heavily on public participation.
  - Creates measurable goals and milestones to track the progress of the implementation.
  - Incorporates Best Management Practices (BMPs) to achieve reductions.

#### Potential Implementation Plan Measures

- Proper Pet Waste Management
- Sanitary Sewer Maintenance and Inspections
- Stormwater Treatment
- Stream Corridor Restoration
- Education and Outreach
- Monitoring Programs



More information on TMDL Implementation Plans can be found on the DEQ website:

http://www.deq.virginia.gov/tmdl/implement.html

#### In the Meantime...

- Citizen monitoring
- Pick up after your pet
- Educate others









# Comment Period on Draft TMDL Report for Hunting Creek, Cameron Run, and Holmes Run

- July 19, 2010 to August 18, 2010
- Draft Report is available on the DEQ website: <a href="http://www.deq.virginia.gov/tmdl/drftmdls/huntingec.pdf">http://www.deq.virginia.gov/tmdl/drftmdls/huntingec.pdf</a>
- Comments should be submitted in writing to:
   Katie Conaway
   13901 Crown Court, Woodbridge, VA 22193
   <u>Katie.Conaway@deq.virginia.gov</u>



**Bryant Thomas** 

Virginia Department of Environmental Quality

Regional Water Quality Programs Manager

Phone: (703) 583-3843

E-mail: Bryant.Thomas@deq.virginia.gov

**Katie Conaway** 

Virginia Department of Environmental Quality

**Regional TMDL Coordinator** 

Phone: (703) 583-3804

E-mail: Katie.Conaway@deq.virginia.gov

Ross Mandel

Interstate Commission on the Potomac River Basin

Phone: (301) 984-1908

E-mail: rmandel@icprb.org

